Shanghai United Imaging Intelligence Co., Ltd.

AI SOLUTIONS for HEALTHCARE

CONTACT US

Address 701 Yunjin Road, Xuhui District, Shanghai 200030

Business Business_UII@uii-ai.com

Media Media_UII@uii-ai.com Website https://www.uii-ai.com

Follow us on LinkedIn

© Shanghai United Imaging Intelligence. All Rights Reserved.

UNITED United Imaging IMAGING U Intelligence

n1 ABOUT US

21 uAI SOLUTIONS

CONTENTS

25 AWARD & CERTIFICATION

uAI PRODUCT PORTFOLIO

Q1 DEPLOYMENT & INTEGRATION

ABOUT US

Shanghai United Imaging Intelligence Co., Ltd. (UII), headquartered in Shanghai, is a subsidiary of United Imaging Group. Since its founding in 2017, UII has been delivering various artificial intelligence (AI) solutions to medicine and transforming the way healthcare is delivered. UII has become a prominent international medical AI company that enables smart equipment, supports biomedical research, and provides total solutions to clinical workflow from screening and diagnosis to treatment and follow-up assessment. VISION Leading Medical Al Innovation

Ull Worldwide

LEADING CHANGE.

Bringing Benefit of Medical AI to All

ual product portfolio

Enhancing accuracy and efficiency in clinical workflows

Expanding opportunities for biomedical research and collaborations

Enabling medical equipment with unprecedented capabilities and user-friendliness

uAl Proc Portfolio

03

LEADING CHANGE.

Clinical Workflow with Al

uAl's 50+ Al-assisted applications are seamlessly integrated to optimize and streamline the entire clinical workflow. These applications cover various diseases in different anatomical regions and clinical scenarios, and encompass all medical imaging modalities, from screening and diagnosis to treatment and follow-up assessment. By focusing on the intricate details of medical diagnostics, our Al technology is designed to enhance healthcare practices, ensuring improved outcomes for patients worldwide.

BRAIN	HEART	CHEST	CANCER	OTHER D
ICH	ССТА	Pulmonary Nodules	Pulmonary Nodules 3D	Runofi
Ischemic Stroke	Coronary Plaque	PLBMD	Brain Mets	Spine So
Cerebral and Carotid CTA	FAI	QCT Analysis	Bone Mets	X-ray Fi
Cerebral CTP	Aorta	Fracture	FFDM	Bone
Cerebral Collateral	EKG-gated CACS	PE	DBT	Orth
Head MRA	Non-gated CACS	Emphysema	Liver MRI	Chest
Brain Parcellation	ССТР	Pneumonia	Prostate MRI	
CSVD	CMR Cine	Lymph Nodes	PET/CT	
fMRI	CMR T1 Mapping	Esophagus		
	CMR LGE/T2W			

LEADING CHANGE.

OMAINS

SURGERY

f CTA

coliosis

racture

Age

io Q

X Ray

Thoracic

Hepatobiliary

Urological

THA

Empowering Clinical Workflow with Al

uAl Portal · Brain

Detection and Evaluation of Intracranial Hemorrhage

- Automatic detection and precise localization of 5 subtypes of intracranial hemorrhages
- Accurate measurement of hemorrhage volume and midline deviation
- Automated registration of follow-up CT scans, combined with automatic tracking and quantitative comparison of lesions

uAl Discover **Cerebral CTP**

Parameters

- MTT, TTP, and Tmax

Detection and Evaluation of Cerebral Ischemia

- Automated segmentation of ASPECTS partitions
- Automated scoring of ASPECTS for left and right hemispheres
- Automatic detection of infarct area and visualization with heatmaps
- Quantitative measurement of infarct area, i.e., using net water uptake (NWU)

- Thin MIP and tMIP reconstructions from single-phase and cerebral CTP series
- Automatic identification of crucial phases based on Time Density Curves

- 4D dynamic visualization of blood flow based on thin-slice CTP series

Reconstruction and Analysis of Head and Neck Vessels

- Automated and precise reconstruction of head and neck vessels, and detection of arterial variations and lesions, e.g., stenosis, aneurysm, and stent
- Automatic segmentation and quantitative analysis of arterial plaques and aneurysms in the head and neck region
- 4D dynamic visualization of blood flow based on thin-slice CTP series
- Robust reconstruction of occluded vessels in acute stroke patients for interventional procedure guidance

Intelligent Processing of Cerebral Vessels using Non-Contrast MRA Images

- vessels
- Displaying images in diverse reconstruction formats
- One-click archiving and printing

LEADING CHANGE.

Reconstruction of Perfusion Maps and Analysis of Perfusion

- Automated detection and correction of motion artifacts
- Automatic construction of tMIP and perfusion maps, including CBF, CBV,
- Automatic localization of core infarct and hypoperfusion regions, and along with the calculation of their mismatch volume and ratio
- Automated recording of Time Density Curves and motion plots

Reconstruction and Analysis of Cerebral Collateral Circulation

- Automatic identification of the abnormal hemisphere and its filling phase
- Automated calculation of ASITN/SIR collateral score
- Quantitative analysis of asymmetric regions

- Automatic and rapid segmentation and centerline extraction of cerebral

uAl Portal · Brain

uAl Portal · Heart

Parcellation and Quantitative Analysis of Brain

- Automated segmentation of 111 brain and 68 cerebral cortex regions
- Support for subjects from 0 to 110 years of age
- Automated identification of abnormal regions based on normal references
- Automatic calculation of risk related to neurodegenerative diseases
- Automated follow-up assessment, and brain health report generation

Reconstruction and Analysis of Coronary Arteries

- etc.
- bridge and CAD-RADS grading

Lesion Detection and Risk Assessment of Cerebral Small Vessel Disease

- Automated analysis of brain atrophy
- Automatic quantitative analysis of various lesions, including WMHs, LA, PVS, RSSI, and CMB, and calculation of semiquantitative visual scores, e.g., Fazekas and Medial Temporal lobe Atrophy (MTA)
- Automatic calculation of cerebral small vessel disease (CSVD) total score

uAl Discover **Coronary Plaque**

Detection and Quantitative Analysis of Coronary Plaques

- User-friendly editing tools for lumen and plaque contours

Resting-State fMRI Data Processing

- Streamlined data processing without complex parameter settings
- Visualization of functional connectivity matrix and 3D brain network - Availability of 8 brain atlases, including AAL, Glasser, etc.
- Automatic removal of the time points with significant head movement
- Automated calculation of graph theory measurements

Analysis of Pericoronary Fat

- Automated segmentation of coronary arteries for accurate identification and quantitative analysis of pericoronary fat
- Automated and customized quantitative analysis of pericoronary fat for precise and specific measurements

LEADING CHANGE

- Automated 3D reconstruction of coronary arteries, including complex conditions, e.g., coronary artery bypass grafting (CABG), anomalous coronary origins, chronic total occlusion (CTO), coronary artery fistula (CAF),

- Automatic detection of lesions, including stenosis, stent and myocardial

- Convenient research tools such as transluminal attenuation gradient (TAG)

- Automatic detection and classification of coronary plaques
- Comprehensive qualitative and quantitative analysis of coronary plaques, including assessment of plaque composition, volume and burden, and morphological features such as positive remodeling index
- Automatic identification of high-risk vulnerable plaques

- Automated report generation and exporting parameters for research

uAl Portal · Heart

Detection and Analysis of Aortic Dissection

- Automated 3D reconstruction of the aorta and its branches
- Automatic identification and classification to triage aortic dissection patients
- Automatic localization of intimal tears and segmentation of true/false lumen with diameter measurement
- Automated evaluation of the condition of aortic branch vessel inlets being affected by dissection

Analysis of EKG-Gated Coronary Artery Calcium Score

- Automatic detection of calcified plaques in the four major coronary arteries
- Automated calculation of the aggregated calcium score
- Automated report generation
- Customizable lesion editing for any coronary artery branch

Analysis of Non-Gated Coronary Artery Calcium Score

- Automatic calcified plaques in the four major coronary arteries
- Automated calculation of the aggregated calcium score
- Eliminating the need for electrocardiography (EKG) gating while achieving a high level of consistency with traditional EKG-gated calcium score

Comprehensive Analysis of Myocardial Ischemia

- Automated reconstruction of long- and short-axis views from multi-phase image series, as well as rapid creation of AIF and TAC curves
- Comprehensive analysis and computation of myocardial ischemic parameters and perfusion maps
- Automatic generation of voxel- and AHA segmental-level bull's eye maps
- Precise determination of the percentage of the ischemic LV myocardium

COMMON FEATURES OF CMR

- Automated and intelligent classification of CMR sequences
- Automatic classification of imaging planes
- Al-assisted segmentation of left ventricle myocardium, blood pool and papillary muscles
- Automatic multi-parametric assessment and bull's eye plot generation
- User-friendly editing tools

uAl Discover **CMR Cine**

uAl Discover **CMR T1 Mapping**

uAl Discover

CMR LGE/T2W

images

LEADING CHANGE.

Cardiac Function and Strain Analysis of Cine

- Fully automated analysis of cardiac function based on cine images

- Comprehensive analysis of strain to assess myocardial deformations across 482 parameters, providing enhanced clinical insights and in-depth research

Comprehensive and Quantitative Analysis of Myocardial T1 Mapping

- Automatic generation of extracellular volume (ECV) map

- Automatic alignment of native and contrast-enhanced T1 images and maps - Customizable map visualization

Comprehensive and Quantitative Analysis of LGE and T2W

- Automatic and precise outline of hyperintense areas on late gadolinium enhancement (LGE) and T2-weighted (T2W) images

- Automatic selection of skeletal muscles and quantitative analysis of T2W

- Intelligent detection of gray zone and assessment of myocardial salvage

uAl Portal · Chest

uAl Discover **Pulmonary Nodules**

Pulmonary Nodule Detection and Follow-up Assessment

- Automatic, efficient and highly sensitive detection of pulmonary nodules
- Comprehensive quantitative analysis of lesions
- Automated registration of follow-up CT scans, combined with automatic tracking and quantitative comparison of lesions
- Automated and customized diagnostic reports

СТ uAl Discover Fracture

Bone Labeling and Fracture Detection

- Precise identification and labeling of individual ribs and vertebrae

Phantom-less Bone Mineral Density Calculation

- Rapid assessment of bone density without using a phantom
- Intelligent detection of Region of Interest (ROI), excluding fractures and bone irregularities
- Easy switching among CPR, MPR, and single vertebral views for smooth visualization and ROI editing

Detection and Analysis of Pulmonary Embolism

- Highly sensitive detection of pulmonary emboli, along with automatic calculation of the pulmonary artery clot load scores

Computer-Aided Analysis System for Quantitative CT Imaging

- Automatic and rapid phantom calibration
- Quantitative analysis of bone mineral density across the entire skeletal system
- User-defined archiving and film printing

Quantitative Analysis of Emphysema

- Multidimensional quantitative analysis of lungs based on CT images
- Automatic segmentation of lung and emphysema regions
- Automated generation of reports

LEADING CHANGE.

- Accurate detection and visualization of rib fractures using MPR/VRT/MIP/CPR
- Substantially enhancing fracture detection sensitivity
- Significantly improving radiologists' reading efficiency by over a quarter

- Automated segmentation and reconstruction of pulmonary arteries and veins
- Automatic triage and classification of pulmonary embolism
- Automatic measurements of RV/LV and PA/Ao

uAl Portal · Chest

uAl Portal · Cancer Care

Pneumonia Detection and Follow-up Assessment

- Automatic and rapid detection of pneumonia
- Accurate quantification of the infected area
- Automated registration of follow-up CT scans, combined with automatic tracking and quantitative comparison of lesions

uAl Discover **Pulmonary Nodules 3D**

- vessels, bronchi, pleura, etc.
- archiving and printing

uAl Discover Lymph Nodes

- **Detection and Follow-up Assessment of Lymph Nodes**
- Precise identification and classification of abnormal lymph nodes in the mediastinum and axilla
- Accurate quantification of lymph nodes
- Automated registration of follow-up CT scans, combined with automatic tracking and quantitative comparison of lesions

Detection of Brain Metastasis

Detection of Esophagus Thickening

- Automated segmentation of the esophagus for accurate analysis
- Automatic localization of abnormal sections within the esophagus

uAl Discover **Bone Mets**

- structures

LEADING CHANGE

Automatic Reconstruction and Visualization of CT Pulmonary Nodules

- Automated detection and multidimensional analysis of pulmonary nodules

- Automated generation of various types of 3D reconstructed images to illustrate the relationships between the nodules and surrounding blood

- Automated generation of structured reports with one-click functionality for

- Automatic detection and analysis of brain metastases
- Substantially enhancing detection sensitivity
- Significantly improving radiologists' reading efficiency by nearly half

Detection and Follow-up Assessment of Skeletal Abnormalities

- Automated detection and identification of bone metastases, tumors, and other skeletal lesions across the entire body

- Precise labeling of individual ribs, vertebrae, pelvis and other bone

- Automatic detection of symptom-accompanying lesions

Automated registration of follow-up CT scans, combined with automatic tracking and quantitative comparison of lesions

uAl Portal · Cancer Care

Automatic Detection of Breast Lesions in Full-Field Digital Mammography

- Automatic classification of breast tissue density
- Automatic detection of calcification, mass, architectural distortion and asymmetry
- Precise localization of lesions
- Automated analysis of lesions with BI-RADS rating

uAl Discover **Prostate MRI**

Tumor

- lesions
 - analysis

uAl Discover DBT

Automatic Detection of Breast Lesions in Digital Breast Tomosynthesis

- Automatic detection of calcification, mass, architectural distortion and asymmetry utilizing both digital breast tomosynthetic images and 2D mammographs
- Automatic classification of breast tissue density
- Precise localization of lesions
- Automated analysis of lesions with BI-RADS rating

Detection of Whole-Body Abnormal Uptakes

- structures
- Automated PET/CT registration and fusion for synchronized viewing - Precise detection, quantification and localization of lesions and anatomical
- Automatic extraction of liver and mediastinal reference uptakes - Automated differentiation between pathological and physiological uptakes
- Automatic registration of follow-up PET/CT, combined with automated tracking for quantitative comparison of lesions
- Automated generation of structured graphical reports

Automatic Detection and Visualization of Liver Lesions

- Automated detection and visualization of liver lesions on MRI scans
- Comprehensive analysis of liver tumors and lesions
- Automated generation of customizable reports

LEADING CHANGE.

Quantitative Analysis of Prostate Gland and Risk Assessment of

- Accurate segmentation and quantitative analysis of prostate gland and
- Automated calculation of PI-RADS for tumor risk assessment - Automatic generation of structured graphical reports for comprehensive

uAl Portal · Other Domains

Reconstruction, Visualization, and Lesion Detection of Lower Extremity Vessels

- Automated reconstruction and visualization of lower extremity vessels
- Accurate detection of stenosis and plaques
- Automatic localization and visualization of perforators
- Automated and customizable archiving and printing

- Accurate evaluation of pediatric skeletal maturity based on various internationally recognized standards
- population

uAl Discover **Spine Scoliosis**

Automated Analysis of Scoliosis based on Digital Radiographs of Full-Length Spine

- Al-assisted segmentation and localization of vertebrae on both frontal and lateral radiographs
- Accurate identification of 20+ anatomical landmarks for 10+ customizable measurements
- Automated analysis of scoliosis and kyphosis
- User-friendly interface with a single window for full-length spine image and three windows for detailed visualization

Scanometry of Lower Limb Alignment

- Precise assessment of lower limb alignment on standing radiographs - Accurate detection of 30+ anatomical landmarks for 20+ customizable
- measurements
- 450x increase in efficiency, drastically reducing the measurement time from 15 minutes manually to 2 seconds automatically
- User-friendly interface with three zoomed-in windows for easy adjustment and visualization

Automated Detection of Fractures on Digital Radiographs - Automated detection of fractures on long bones and joints in both anteroposterior and lateral radiographs - Automatic localization of the detected fractures

Lesion Detection in Digital Chest Radiographs

- ratio
- nodules

LEADING CHANGE.

Evaluation of Bone Age in Children

- Comprehensive assessment of growth and development in pediatric
- Automated generation of customizable reports

- Automatic detection of pneumothorax and calculation of lung compression
- Automatic detection and precise localization of pulmonary masses and
- Accurate measurement of cardiothoracic ratio

uAl Pioneer Portal · Surgery

AI-Assisted Surgical Planning System for Thoracic Surgery

- Automated demarcation of pulmonary structures and lesions, e.g., lung segments and sub-segments, tracheobronchial tree, pulmonary arteries and veins, pulmonary nodules, and mediastinal lymph nodes
- One-shot 3D reconstruction and visualization
- Comprehensive surgical simulation and planning tools

AI-Assisted Surgical Planning System for Hepatobiliary Surgery

- Automated segmentation and one-shot 3D visualization of liver segments, tumors, hepatic arteries and veins, portal veins, bile ducts, gallbladder, pancreas, spleen, etc.
- Comprehensive surgical simulation and planning tools
- Automatic calculation of the ratio of residual liver volume
- Portal territory analysis for tumors

AI-Assisted Surgical Planning System for Urological Surgery

- Automated segmentation of renal tumors, renal arteries and veins, adrenal glands, ureters, and bladder
- One-shot 3D reconstruction and visualization
- Comprehensive surgical simulation and planning tools

AI-Assisted Surgical Planning System for Total Hip Arthroplasty

- Automated recommendations for the size and position of a hip prosthesis
- Seamless and institutive workflow from prosthesis selection to virtual osteotomy while ensuring precise symmetry with the healthy side
- Automatic correction of image magnification
- Intelligent tools for over 10+ customizable key measurements, facilitating preoperative planning and postoperative assessment

One-Click Automatic 3D Reconstruction

Various Surgical Simulation Tools

Customizable color, transparency settings, and show/hide toggles

Intelligent simulation of tumor resection

Simultaneous Viewing on Multi-Platforms

- Supporting various use cases, including consultation rooms and operating rooms
- Enabling visualization on PCs without software installation and on mobile devices through QR code scanning

Surgeon's Office

Intelligent simulation of resection margin

Operating Room

Mobile Terminal

Biomedical Research with Al

uAI has created an inclusive platform and a collaborative ecosystem for sharing medical AI technology. This platform hosts a diverse array of over 150 medical AI algorithms and specialized toolboxes designed for biomedical research in the areas of neurology, cardiology, PET imaging, and beyond. Our collaborators can leverage this platform and ecosystem to become AI research masters and drive medical AI research forward, delving deeper into the mysteries of human life, and expanding their understanding of unexplored territories.

23

LEADING CHANGE.

Empowering Scientific Research with Al

24

uAl Research Portal

Efficient Data Management

Data Collection

- Local server deployment
- Seamless integration with in-house data management systems
- Supporting data import from different modalities

Data Management

- Data and project management with user credentials
- Repository for multi-center data sharing
- Automatically identifying and removing patient protected health information (PHI)

Advanced Research Capabilities

Radiomics Analysis Tools

Automated extraction of 2,200-dimensional features

13 machine learning classifiers, and grid searching algorithms for the optimal hyper-parameters

Online biostatistical analysis

Versatile Annotation Tools

Fully-Automated Image Annotation

- Fully automated segmentation of 150+ organs and lesions
- A wide range of image annotation tools
- Accelerating image segmentation workflow

Semi-Automated Image Annotation

- Validated high-performance algorithms for rapid and accurate segmentation and reconstruction
- Efficient interactive uAI smart annotation tool (uSAT) segmentation tools
- Accurate online self-learning algorithms for delineation and propagation

Convenient Deep Learning Tools

- Customized AI models for specific research needs - Cascaded segmentation models
- Visual inspection permitted during segmentation model training
- No requirement for algorithm implementation experience

Designated Toolboxes

Neurological Research: 110+ segmentation algorithms of MRI brain structures

25

LEADING CHANGE.

and peri-coronal fat

Nuclear Medicine Research: Advanced registration of PET and CT images, and segmentation of organs and lesions

uSAT: A Smart Annotation Tool

Modality-Nonspecific

uSAT supports generic segmentation tasks for various types of the images, including CT, MRI, radiotherapy, and cell biology, within a single software package. This feature makes it convenient for medical AI research

Ultrasound

Radiotherapy

Pathology

Cell Biology

Smart Segmentation

uSAT accelerates a research project with its efficiency in data labeling. A single 2D bounding box is all that is needed to generate fine segmentation on the entire 3D sequence, thanks to the powerful collection of intuitive, generic and interactive segmentation tools

Efficient Segmentation Tools

Example 1

Example 2

One-Shot result

One-Shot result

Minimally refined result using the same uSAT tool

Automatic Propagation for Efficient 3D Segmentation

Initial segmentation on a single slice

Segmentation of Tubular Structures

5 seconds of interaction

Excellent Performance

uSAT can complete the "most accurate" target segmentation with the "least number of clicks", compared with the state-of-the-art segmentation models

> Table 1: One model for segmentation on a wide range of segmentation tasks. SEEM is the first model to simultaneously support generic segmentation, referring segmentation, and interactive segmentation, as well as prompt compositionality. (#Concurrent work. - indicates the model does not have capability for the task, * indicates do not have reported number.)

* Zou et al., Segment everything everywhere all at once. NeurIPS,2023

LEADING CHANGE.

Automatic propagation of the initial segmentation throughout full sequence

3D reconstruction result from uSAT

5 minutes of interaction

Showcase for Research

Radiology (2023)

Deep learning segmentation and reconstruction for CT of chronic total coronary occlusion

Cell Reports Medicine (2023)

Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction

Multi-Modality Image Reconstruction				
Head Personandro e prunt Odest	CHALLENGE	Difficu recon:	lties in achieving fast struction	and low-dose medical image
Transition of the second	SOLUTION	To develop a hybrid deep-learning and iterative reconstruction framework		
- Argentes - Argentes - Maniser - Maniser	10 - 10 Organ-level so time in MR	Os can	90% Radiation dose reduction in CT	90% Radiation dose reduction in CT

IEEE Transactions on Neural Networks and Learning Systems (2023)

Hierarchical graph convolutional network built by multiscale atlases for brain disorder diagnosis using functional connectivity

IEEE Transactions on Neural Networks and Learning Systems (2023)

Breast Tumor Segmentation in DCE-MRI With Tumor Sensitive Synthesis

IEEE Transactions on Medical Imaging (2023)

Topology-Aware Graph Network for Centerline-Based Vessel Labeling

Nature Communications (2022)

A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images

LEADING CHANGE.

CHALLENGE Difficulties in accurately segmenting tumors in DCE-MR images

To develop a novel tumor-sensitive synthesis module and further integrate it with tumor segmentation

2.1s

Average inference time

CHALLENGE Difficulties in anatomically labeling head and neck vessels due to their tortuous and branched nature and frequent proximity to nearby vasculature

> To develop a novel topology-aware graph network (TaG-Net) for vessel segmentation and labeling

> > 18 Vessel segments/parts

97.8% Average precision in centerline labeling

ar Segmentation				
INGE	Difficulties in delineating individual tooth and alveolar bones from dental cone-beam CT (CBCT) images			
ON	To develop an AI system for efficient, precise, and fully automated segmentation			
38	0.945			

CBCT scans from 15 centers

Dice of segmentation

Showcase for Research

Showcase for Research

Nature Communications (2022)

Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy

Whole-Body Segmentation				
	CHALLENGE	Time-consuming in mar which delays radiothera	nual delineation of organ apy	is-at-risk and tumors,
	SOLUTION	To develop a lightweight deep learning framework for fast and accurate delineation		
 A dorth andre loss 1s hypothetisment Constructions 	67 Organs and tumors	28,581 Large-scale dataset	0.95 Average Dice	< 2s Near real-time delineation

IEEE Transactions on Medical Imaging (2022)

Semi-Supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images

Neuro Oncology (2021)

Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers

Brain Tumor Diagnosis				
	CHALLENGE	Requiring neuropathologi tive hematoxylin and eosi	sts to make histological diagnosis of glioma on postopera- n stained slides	
	SOLUTION	To develop an AI neuropathologist for glioma classification with whole-slide (WSI)		
	323		87.5%	
	WSIs with 97,3	252 image patches	Patient-level accuracy of 5 glioma types, including A, O, AA, AO and GBM	

NUMBER of PATENTS

Granted **200+** (70 Int'l)

ACCUMULATED SCIENTIFIC RESEARCH ACHIEVEMENTS

Articles published

2,000+

Total citations

З

LEADING CHANGE.

Submitted

Top scientific articles (since 2018)

Medical Equipment with Al

MR

uAl enables multimodal medical imaging and radiotherapy equipment with 40+ Al technologies. These technologies are integrated into the entire process of diagnosis and treatment, making imaging and therapy faster, better, safer, and more cost-effective.

Mammo

RT

СТ

DSA

PET/CT

LEADING CHANGE.

Empowering Medica Equipment with A

Enhancing All-Modalities Medical Imaging

DELTA

L

ePhase

CardioCapture

Deep IR

35 Enhancing All-modalities Medical Imaging

LEADING CHANGE.

Enhancing All-modalities Medical Imaging

uAl Solutions

uAI's multi-scenario solutions integrate multiple AI platforms and applications, building a digital healthcare ecosystem, and enabling precision clinical diagnosis and treatment. Furthermore, the integration of multiple Al technologies enables the entire process of diagnosis and treatment.

uAl Solution for Neuroradiology uAl Solution for Cardiology

uAl Solution for **Thoracic Radiology** uAl Solution for **Cancer Care** Management

Surgery

LEADING CHANGE.

uAl Solution for **Quality Control**

uAl Solution for Neuroradiology

uAl innovative stroke solution combines three powerful platforms, СТ offering a comprehensive and efficient approach to stroke management.

Key Features

Care Coordination Platform

Hub

Hospital

Stroke

Expert

Fast and easy communication

- Collaborating with the multidisciplinary team in real time

Telestroke

- Timely notifying physicians in regional hospitals - Remote image reading

Al-powered solution streamlines the analysis of MRI MRI brain image.

Key Features

- Structured and quantitative radiological reports
- Brain health assessment across various age groups

Identifying Abnormal Brain Regions

- Fully automated segmentation and analysis of brain structures and lesions
- Longitudinal analysis

LEADING CHANGE

- Examination of burdens and patterns of lesions

uAl Solution for Cardiology

In the field of cardiology, uAl offers a comprehensive cardiac assessment from multiple perspectives: anatomy, physiology, function, and tissue characteristics, providing Al-powered assistance for more precise clinical decisions.

Key Features

Accelerating Identification of Critical Patients

Comprehensive Multi-Modality Platform

Automated Workflows for Faster Patient Care

LEADING CHANGE.

One-Stop Image Reading

Enabling radiologists to view different inspection results on the same page to get a

Multiple Image Analysis Tools

- Fully automated segmentation, mapping, classification, detection, and registration algorithms

- Providing qualitative and quantitative analysis tools to assist radiologists in evaluating the

Automatic Reporting

- Customizable reporting and automated archiving for cardiac MRI and CT evaluations - Enabling radiologists to access all relevant data from a single location

uAI Solution for Thoracic Radiology

uAl empowers radiological diagnosis with enhanced efficiency and accuracy, enabling the detection of multiple chest diseases from a single CT scan.

Key Features

One Scan, Multiple Detection for Chest CT Scan

Examples of Clinical Use Cases

Medical History

- Male, 80 years old
- Underwent a chest CT scan for dyspnea

Pneumonia caused by COVID-19

High-risk solid pulmonary nodule in the right middle lobe

uAI Automatically Notifies Potential Diseases

Medical History

- Male, 68 years old
- Underwent a chest CT scan for annual checkup

43

LEADING CHANGE.

uAl Automatically Detects Suspicious Findings

For Clinical Diagnosis

Enlarged mediastinal lymph nodes

The total calcium score of the coronary arteries is 4

Source: Shanghai Top Hospital

For Annual Physical Examinations

uAl Solution for Cardiology

uAl Solution for Cancer Care Management

uAl empowers the entire process of cancer care, supporting early cancer screening, comprehensive diagnosis, and precision treatment.

Key Features

Improving **Image Quality**

Increasing **Detection Accuracy** Facilitating Diagnosis

ÎŭÎŬ

Improving Image Quality

1110

uAI ACS **Smart Constellation** Shuttling MR Imaging Ultra-high speed MR scanning

Al-assisted Scanning

CROCED IN CO

DELTA

Low Dose CT Imaging

Ultra-low dose non-destructive imaging

Reconstruction

Increasing Detection Accuracy

Facilitating Accurate Diagnosis

Automatic Lesion Detection

Assisting in Treatment Planning

Preoperative Planning

Intraoperative Navigation **Clinician-Patient Communication**

uAl Solution for Cancer Care Management

45

Traditional Imaging CT DELTA Imaging

Ó

Assisting in

Treatment Planning

HYPER-DLR

Noise Reduction for

PET Scanning

Effectively reducing PET imaging noise

while greatly improving imaging quality

Traditional

HYPER DLR

LEADING CHANGE.

Multidimensional analysis results: nodule or tumor size, volume, density, composition, and enhancement characteristics

Quantitative Analysis

Reporting System

Surgical Education

uAI Solution for Surgery

uAI MERITS

Metaverse Ecosystem for Robotic Intervention, Therapy, and Surgery

Preoperatively

Intelligent Patient Identification and Positioning

Intraoperatively

Real-time Registration, Fusion and Guidance

Precise Execution/Actuation of Procedures with Guidance from Digital Twins - Validation of motion path - Collision prediction - Obstacle localization - Real-time surgical guidance **Real-Time** Actuation Integrated Multiple visual sensors **Real-time** Operating Visualization Room and Simulation **Real-Time** Modeling Engineering models of Digital Twin of the devices in the operating room

environment

4,

LEADING CHANGE.

uAI Solution for Quality Control

uAI QC Portal provides AI-assisted automatic image quality control for hospitals and regional medical alliances, ensuring image quality meets the standards required for sharing across hospitals and institutes.

Real-Time Image QC

Intelligent Identification

Instantaneous

Feedback

Guidance for Image Retake Considerations

Empowering Regional Imaging Centers

40

LEADING CHANGE.

uAl Solution for Quality Control

DEPLOYMENT and WORKFLOW

Deployment

On-Premise

SaaS Mode

Hybrid Mode

Workflow Improvement

LEADING CHANGE

DR

- Rapidly and accurately determine key attributes, e.g., modality and anatomical location, by analyzing only a minimal number of images

- · Auto-load AI results matching what is examined on PACS (integration

AWARDS and CERTIFICATION

MICCAI 2023 AIIB Challenge: CT-based Prediction of Mortality in Pulmonary Fibrosis

One of the Winners of the fastMRI Image Reconstruction Challenge, Oganized by Facebook AI Research (FAIR) and NYU Langone Health

Super AI Leader TOP30

2020 Super Al Leader

First Prize of the SegTHOR Challenge: Segmentation of Thoracic Organs at Risk in CT images

53

LEADING CHANGE.

Certification & Approval

